Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(4): e14115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353019

RESUMO

AIM: In neuroendocrine cells, large dense-core vesicles (LDCVs) undergo highly regulated pre-fusion processes before releasing hormones via membrane fusion. Significant heterogeneity has been found for LDCV population based on the dynamics of membrane fusion. However, how the pre-fusion status impacts the heterogeneity of LDCVs still remains unclear. Hence, we explored pre-fusion determinants of heterogeneous membrane fusion procedure of LDCV subpopulations. METHODS: We assessed the pre-fusion motion of two LDCV subpopulations with distinct membrane fusion dynamics individually, using total internal reflection fluorescence microscopy. These two subpopulations were isolated by blocking Rho GTPase-dependent actin reorganization using Clostridium difficile toxin B (ToxB), which selectively targets the fast fusion vesicle pool. RESULTS: We found that the fast fusion subpopulation was in an active motion mode prior to release, termed "active" LDCV pool, while vesicles from the slow fusion subpopulation were also moving but in a significantly more confined status, forming an "inert" pool. The depletion of the active pool by ToxB also eliminated fast fusion vesicles and was not rescued by pre-treatment with phorbol ester. A mild actin reorganization blocker, latrunculin A, that partially disrupted the active pool, only slightly attenuated the fast fusion subpopulation. CONCLUSION: The pre-fusion motion state of LDCVs also exhibits heterogeneity and dictates the heterogeneous fusion pore dynamics. Rearrangement of F-actin network mediates vesicle pre-fusion motion and subsequently determines the membrane fusion kinetics.


Assuntos
Vesículas de Núcleo Denso , Fusão de Membrana , Humanos , Actinas , Exocitose , Transporte Biológico
2.
PLoS Genet ; 19(10): e1010979, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844085

RESUMO

Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.


Assuntos
Proteínas de Drosophila , Exossomos , Animais , Humanos , Masculino , Vesículas de Núcleo Denso , Drosophila , Proteínas de Drosophila/genética , Exossomos/genética , Proteínas , Proteínas rab de Ligação ao GTP/genética , Fator de Transcrição AP-1
3.
J Neurosci ; 43(45): 7616-7625, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37852790

RESUMO

Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENT Neuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVs in vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.


Assuntos
Vesículas de Núcleo Denso , Neuropeptídeos , Animais , Humanos , Vesículas Secretórias/metabolismo , Neurônios/fisiologia , Hipocampo/fisiologia , Neuropeptídeos/metabolismo , Fatores de Crescimento Neural/metabolismo , Mamíferos
4.
PLoS One ; 18(9): e0291977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751424

RESUMO

Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, can rescue the neuroendocrine secretion and sorting defects observed in HID-1 KO cells. Finally, we report that a point mutation within that domain, identified in patients with endocrine and neurological deficits, leads to loss of function.


Assuntos
Vesículas de Núcleo Denso , Hormônios Peptídicos , Humanos , Aminoácidos , Movimento Celular , Sistemas Neurossecretores
5.
Elife ; 122023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695731

RESUMO

Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Vesículas de Núcleo Denso , Proteínas do Tecido Nervoso , Neurônios , Proteínas R-SNARE , Animais , Camundongos , Evolução Biológica , Complexo de Golgi , Proteínas do Tecido Nervoso/genética , Proteínas R-SNARE/genética , Exocitose
6.
Curr Biol ; 33(18): 3851-3864.e7, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586371

RESUMO

Axonal transport is key to neuronal function. Efficient transport requires specific motor-cargo association in the soma, yet the mechanisms regulating this early step remain poorly understood. We found that EBP-1, the C. elegans ortholog of the canonical-microtubule-end-binding protein EB1, promotes the specific association between kinesin-3/KIF1A/UNC-104 and dense core vesicles (DCVs) prior to their axonal delivery. Using single-neuron, in vivo labeling of endogenous cargo and EBs, we observed reduced axonal abundance and reduced secretion of DCV cargo, but not other KIF1A/UNC-104 cargoes, in ebp-1 mutants. This reduction could be traced back to fewer exit events from the cell body, where EBP-1 colocalized with the DCV sorting machinery at the trans Golgi, suggesting that this is the site of EBP-1 function. EBP-1 calponin homology (CH) domain was required for directing microtubule growth on the Golgi, and mammalian EB1 interacted with KIF1A in an EBH-domain-dependent manner. Loss- and gain-of-function experiments suggest a model in which both kinesin-3 binding and guidance of microtubule growth at the trans Golgi by EBP-1 promote motor-cargo association at sites of DCV biogenesis. In support of this model, tethering either EBP-1 or a kinesin-3/KIF1A/UNC-104-interacting domain from an unrelated protein to the Golgi restored the axonal abundance of DCV proteins in ebp-1 mutants. These results uncover an unexpected role for a microtubule-associated protein and provide insights into how specific kinesin-3 cargo is delivered to the axon.


Assuntos
Caenorhabditis elegans , Cinesinas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Corpo Celular/metabolismo , Vesículas de Núcleo Denso , Neurônios/metabolismo , Axônios/metabolismo , Mamíferos
7.
Proc Natl Acad Sci U S A ; 120(1): e2214897120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574702

RESUMO

During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.


Assuntos
Células Cromafins , Vesículas de Núcleo Denso , Camundongos , Animais , Sinaptotagminas/metabolismo , Exocitose/fisiologia , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Vesículas Secretórias/metabolismo , Fusão de Membrana/fisiologia , Cálcio/metabolismo
8.
Elife ; 112022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214779

RESUMO

Munc13 proteins are priming factors for SNARE-dependent exocytosis, which are activated by diacylglycerol (DAG)-binding to their C1-domain. Several Munc13 paralogs exist, but their differential roles are not well understood. We studied the interdependence of phorbolesters (DAG mimics) with Munc13-1 and ubMunc13-2 in mouse adrenal chromaffin cells. Although expression of either Munc13-1 or ubMunc13-2 stimulated secretion, phorbolester was only stimulatory for secretion when ubMunc13-2 expression dominated, but inhibitory when Munc13-1 dominated. Accordingly, phorbolester stimulated secretion in wildtype cells, or cells overexpressing ubMunc13-2, but inhibited secretion in Munc13-2/Unc13b knockout (KO) cells or in cells overexpressing Munc13-1. Phorbolester was more stimulatory in the Munc13-1/Unc13a KO than in WT littermates, showing that endogenous Munc13-1 limits the effects of phorbolester. Imaging showed that ubMunc13-2 traffics to the plasma membrane with a time-course matching Ca2+-dependent secretion, and trafficking is independent of Synaptotagmin-7 (Syt7). However, in the absence of Syt7, phorbolester became inhibitory for both Munc13-1 and ubMunc13-2-driven secretion, indicating that stimulatory phorbolester x Munc13-2 interaction depends on functional pairing with Syt7. Overall, DAG/phorbolester, ubMunc13-2 and Syt7 form a stimulatory triad for dense-core vesicle priming.


Assuntos
Diglicerídeos , Ésteres de Forbol , Animais , Camundongos , Vesículas de Núcleo Denso , Exocitose , Proteínas SNARE/metabolismo , Sinaptotagminas
9.
Adv Sci (Weinh) ; 9(27): e2202263, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896896

RESUMO

Large dense-core vesicles (LDCVs) are larger in volume than synaptic vesicles, and are filled with multiple neuropeptides, hormones, and neurotransmitters that participate in various physiological processes. However, little is known about the mechanism determining the size of LDCVs. Here, it is reported that secretogranin II (SgII), a vesicle matrix protein, contributes to LDCV size regulation through its liquid-liquid phase separation in neuroendocrine cells. First, SgII undergoes pH-dependent polymerization and the polymerized SgII forms phase droplets with Ca2+ in vitro and in vivo. Further, the Ca2+ -induced SgII droplets recruit reconstituted bio-lipids, mimicking the LDCVs biogenesis. In addition, SgII knockdown leads to significant decrease of the quantal neurotransmitter release by affecting LDCV size, which is differently rescued by SgII truncations with different degrees of phase separation. In conclusion, it is shown that SgII is a unique intravesicular matrix protein undergoing liquid-liquid phase separation, and present novel insights into how SgII determines LDCV size and the quantal neurotransmitter release.


Assuntos
Neuropeptídeos , Secretogranina II , Vesículas de Núcleo Denso , Hormônios , Lipídeos , Neurotransmissores/metabolismo , Secretogranina II/metabolismo
10.
Traffic ; 23(9): 430-441, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908282

RESUMO

A GGGGCC (G4 C2 ) repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although disruptions in axonal transport are implicated in the pathogenesis of multiple neurodegenerative diseases, the underlying mechanisms causing these defects remain unclear. Here, we performed live imaging of Drosophila motor neurons expressing expanded G4 C2 repeats in third-instar larvae and investigated the axonal transport of multiple organelles in vivo. Expression of expanded G4 C2 repeats causes an increase in static axonal lysosomes, while it impairs trafficking of late endosomes (LEs) and dense core vesicles (DCVs). Surprisingly, however, axonal transport of mitochondria is unaffected in motor axons expressing expanded G4 C2 repeats. Thus, our data indicate that expanded G4 C2 repeat expression differentially impacts axonal transport of vesicular organelles and mitochondria in Drosophila models of C9orf72-associated ALS/FTD.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Esclerose Amiotrófica Lateral/genética , Animais , Transporte Axonal , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Vesículas de Núcleo Denso , Drosophila/metabolismo , Demência Frontotemporal/metabolismo , Lisossomos/metabolismo
11.
J Cell Biol ; 221(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35426896

RESUMO

The time course of signaling by peptide hormones, neural peptides, and other neuromodulators depends on their storage inside dense core vesicles (DCVs). Adaptor protein 3 (AP-3) assembles the membrane proteins that confer regulated release of DCVs and is thought to promote their trafficking from endosomes directly to maturing DCVs. We now find that regulated monoamine release from DCVs requires sorting nexin 5 (SNX5). Loss of SNX5 disrupts trafficking of the vesicular monoamine transporter (VMAT) to DCVs. The mechanism involves a role for SNX5 in retrograde transport of VMAT from endosomes to the TGN. However, this role for SNX5 conflicts with the proposed function of AP-3 in trafficking from endosomes directly to DCVs. We now identify a transient role for AP-3 at the TGN, where it associates with DCV cargo. Thus, retrograde transport from endosomes by SNX5 enables DCV assembly at the TGN by AP-3, resolving the apparent antagonism. A novel role for AP-3 at the TGN has implications for other organelles that also depend on this adaptor.


Assuntos
Complexo 3 de Proteínas Adaptadoras , Vesículas de Núcleo Denso , Endossomos , Nexinas de Classificação , Complexo 3 de Proteínas Adaptadoras/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Vesículas de Núcleo Denso/metabolismo , Endossomos/metabolismo , Neurotransmissores/metabolismo , Transporte Proteico , Nexinas de Classificação/metabolismo
12.
Cell Cycle ; 21(5): 531-546, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35067177

RESUMO

Exocytosis of large dense core vesicles is responsible for hormone secretion in neuroendocrine cells. The population of primed vesicles ready to release upon cell excitation demonstrates large heterogeneity. However, there are currently no models that clearly reflect such heterogeneity. Here, we develop a novel model based on single vesicle release events from amperometry recordings of PC12 cells using carbon fiber microelectrode. In this model, releasable vesicles can be grouped into two subpopulations, namely, SP1 and SP2. SP1 vesicles replenish quickly, with kinetics of ~0.0368 s-1, but likely undergo slow fusion pore expansion (amperometric signals rise at ~2.5 pA/ms), while SP2 vesicles demonstrate slow replenishment (kinetics of ~0.0048 s-1) but prefer fast dilation of fusion pore, with an amperometric signal rising rate of ~9.1 pA/ms. Phorbol ester enlarges the size of SP2 partially via activation of protein kinase C and conveys SP1 vesicles into SP2. Inhibition of Rho GTPase-dependent actin rearrangement almost completely depletes SP2. We also propose that the phorbol ester-sensitive vesicle subpopulation (SP2) is analogous to the subset of superprimed synaptic vesicles in neurons. This model provides a meticulous description of the architecture of the readily releasable vesicle pool and elucidates the heterogeneity of the vesicle priming mechanism.


Assuntos
Vesículas de Núcleo Denso , Exocitose , Animais , Exocitose/fisiologia , Células PC12 , Ésteres de Forbol/metabolismo , Ratos , Vesículas Sinápticas/metabolismo
13.
Dev Neurosci ; 43(6): 376-382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695821

RESUMO

Calcium-dependent activator protein for secretion 2 (CAPS2; also referred to as CADPS2) is a dense core vesicle-associated protein that promotes the activity-dependent release of neuropeptides including neurotrophins. Addictive drugs appear to prime neurotrophin release in multiple brain regions, but mechanistic factors are still being elucidated. Here, experimenters administered cocaine to adolescent mice at doses that potentiated later cocaine self-administration. Experimenter-administered cocaine elevated the CAPS2 protein content in the orbitofrontal cortex (OFC; but not striatum) multiple weeks after drug exposure. Meanwhile, proteins that are sensitive to brain-derived neurotrophic factor (BDNF) release and binding (phosphorylated protein kinase B and phosphoinositide 3-kinase, and GABAAα1 levels) did not differ between cocaine-exposed and naive mice in the OFC. This pattern is consistent with evidence that CAPS2 primes stimulated release of neurotrophins like BDNF, rather than basal levels. Thus, cocaine administered at behaviorally relevant doses elevates CAPS2 protein content in the OFC, and the effects are detected long after cocaine exposure.


Assuntos
Cocaína , Proteínas do Tecido Nervoso , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina , Cocaína/farmacologia , Vesículas de Núcleo Denso , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases , Córtex Pré-Frontal/metabolismo
14.
Transl Neurodegener ; 10(1): 37, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565482

RESUMO

BACKGROUND: New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. METHODS: Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55). RESULTS: In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. CONCLUSIONS: These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Córtex Cerebral/metabolismo , Disfunção Cognitiva/líquido cefalorraquidiano , Vesículas de Núcleo Denso , Humanos
15.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362840

RESUMO

Pancreatic ß cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse ß cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their ß cells are viable, and their ß cells still contain numerous insulin granules. Endocytosis in these ß cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in ß cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.


Assuntos
Dinaminas/genética , Hiperglicemia/etiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Glicemia/genética , Glicemia/metabolismo , Sinalização do Cálcio/genética , Vesículas de Núcleo Denso/metabolismo , Dinamina II/genética , Dinaminas/metabolismo , Endocitose/fisiologia , Feminino , Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo
16.
Int J Numer Method Biomed Eng ; 37(12): e3523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34418891

RESUMO

Recent experimental observations have shown evidence of an unexpected sudden drop-off in the dense core vesicles (DCVs) content at the ends of certain types of axon endings. This article seeks to determine whether these observations may be explained without modifying the parameters characterizing the ability of distal en passant boutons to capture and accumulate DCVs. We developed a mathematical model that is based on the conservation of captured and transiting DCVs in boutons. The model consists of 77 ordinary differential equations and is solved using a standard Matlab solver. We hypothesize that the drop in DCV content in distal boutons is due to an insufficient supply of anterogradely moving DCVs coming from the soma. As anterogradely moving DCVs are captured (and eventually destroyed) in more proximal boutons on their way to the end of the terminal, the fluxes of anterogradely moving DCVs between the boutons become increasingly smaller, and the most distal boutons are left without DCVs. We tested this hypothesis by modifying the flux of DCVs entering the terminal and found that the number of most distal boutons left unfilled increases if the DCV flux entering the terminal is decreased. The number of anterogradely moving DCVs in the axon can be increased either by the release of a portion of captured DCVs into the anterograde component or by an increase of the anterograde DCV flux into the terminal. This increase could lead to having enough anterogradely moving DCVs such that they could reach the most distal bouton and then turn around by changing molecular motors that propel them. The model suggests that this could result in an increased concentration of resident DCVs in distal boutons beginning with bouton 2 (the most distal is bouton 1). This is because in distal boutons, DCVs have a larger chance to be captured from the transiting state as they pass the boutons moving anterogradely and then again as they pass the same boutons moving retrogradely.


Assuntos
Drosophila , Neuropeptídeos , Animais , Vesículas de Núcleo Denso , Neurônios Motores , Terminações Pré-Sinápticas
17.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020952

RESUMO

Synaptic vesicles (SVs) release neurotransmitters at specialized active zones, but release sites and organizing principles for the other major secretory pathway, neuropeptide/neuromodulator release from dense-core vesicles (DCVs), remain elusive. We identify dynamins, yeast Vps1 orthologs, as DCV fusion site organizers in mammalian neurons. Genetic or pharmacological inactivation of all three dynamins strongly impaired DCV exocytosis, while SV exocytosis remained unaffected. Wild-type dynamin restored normal exocytosis but not guanosine triphosphatase-deficient or membrane-binding mutants that cause neurodevelopmental syndromes. During prolonged stimulation, repeated use of the same DCV fusion location was impaired in dynamin 1-3 triple knockout neurons. The syntaxin-1 staining efficiency, but not its expression level, was reduced. αSNAP (α-soluble N-ethylmaleimide-sensitive factor attachment protein) expression restored this. We conclude that mammalian dynamins organize DCV fusion sites, downstream of αSNAP, by regulating the equilibrium between fusogenic and non-fusogenic syntaxin-1 promoting its availability for SNARE (SNAP receptor) complex formation and DCV exocytosis.


Assuntos
Neuropeptídeos , Vesículas Secretórias , Animais , Vesículas de Núcleo Denso , Dinaminas/metabolismo , Mamíferos/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903230

RESUMO

Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Neurotransmissores/química , Sinaptotagmina I/genética , Sinaptotagminas/genética , Animais , Cálcio/química , Cálcio/metabolismo , Vesículas de Núcleo Denso/genética , Vesículas de Núcleo Denso/metabolismo , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Humanos , Camundongos , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Neurônios/patologia , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo
19.
Cell Rep ; 35(2): 108973, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852866

RESUMO

Fast axonal transport of neuropeptide-containing dense core vesicles (DCVs), endolysosomal organelles, and presynaptic components is critical for maintaining neuronal functionality. How the transport of DCVs is orchestrated remains an important unresolved question. The small GTPase Rab2 mediates DCV biogenesis and endosome-lysosome fusion. Here, we use Drosophila to demonstrate that Rab2 also plays a critical role in bidirectional axonal transport of DCVs, endosomes, and lysosomal organelles, most likely by controlling molecular motors. We further show that the lysosomal motility factor Arl8 is required as well for axonal transport of DCVs, but unlike Rab2, it is also critical for DCV exit from cell bodies into axons. We also provide evidence that the upstream regulators of Rab2 and Arl8, Ema and BORC, activate these GTPases during DCV transport. Our results uncover the mechanisms underlying axonal transport of DCVs and reveal surprising parallels between the regulation of DCV and lysosomal motility.


Assuntos
Fatores de Ribosilação do ADP/genética , Transporte Axonal/genética , Vesículas de Núcleo Denso/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Proteína rab2 de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Vesículas de Núcleo Denso/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Fusão de Membrana , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/ultraestrutura , Biogênese de Organelas , Ligação Proteica , Transdução de Sinais , Proteína rab2 de Ligação ao GTP/metabolismo
20.
STAR Protoc ; 2(1): 100325, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659902

RESUMO

Neuropeptides are essential signaling molecules secreted by dense-core vesicles (DCVs). They contribute to information processing in the brain, controlling a variety of physiological conditions. Defective neuropeptide signaling is implicated in several psychiatric disorders. Here, we provide a protocol for the quantitative analysis of DCV fusion events in rodent neurons using pH-sensitive DCV fusion probes and custom-written analysis algorithms. This method can be used to study DCV fusion mechanisms and is easily adapted to investigate fusion principles of other secretory organelles. For complete details on the use and execution of this protocol, please refer to Persoon et al. (2019).


Assuntos
Algoritmos , Vesículas de Núcleo Denso/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Vesículas de Núcleo Denso/genética , Genes Reporter , Camundongos , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...